数据整理
library(vegan)
## Loading required package: permute
## Loading required package: lattice
## This is vegan 2.6-4
data("varespec")
pca <- rda(varespec)
首先看一下结果:
summary(pca)
## 
## Call:
## rda(X = varespec) 
## 
## Partitioning of variance:
##               Inertia Proportion
## Total            1826          1
## Unconstrained    1826          1
## 
## Eigenvalues, and their contribution to the variance 
## 
## Importance of components:
##                            PC1      PC2       PC3     PC4      PC5      PC6
## Eigenvalue            982.9788 464.3040 132.25052 73.9337 48.41829 37.00937
## Proportion Explained    0.5384   0.2543   0.07244  0.0405  0.02652  0.02027
## Cumulative Proportion   0.5384   0.7927   0.86519  0.9057  0.93220  0.95247
##                            PC7      PC8       PC9      PC10     PC11     PC12
## Eigenvalue            25.72624 19.70557 12.274191 10.435361 9.350783 2.798400
## Proportion Explained   0.01409  0.01079  0.006723  0.005716 0.005122 0.001533
## Cumulative Proportion  0.96657  0.97736  0.984083  0.989799 0.994921 0.996454
##                           PC13      PC14      PC15      PC16      PC17
## Eigenvalue            2.327555 1.3917180 1.2057303 0.8147513 0.3312842
## Proportion Explained  0.001275 0.0007623 0.0006604 0.0004463 0.0001815
## Cumulative Proportion 0.997729 0.9984910 0.9991515 0.9995977 0.9997792
##                            PC18      PC19      PC20      PC21      PC22
## Eigenvalue            0.1866564 1.065e-01 6.362e-02 2.521e-02 1.652e-02
## Proportion Explained  0.0001022 5.835e-05 3.485e-05 1.381e-05 9.048e-06
## Cumulative Proportion 0.9998814 9.999e-01 1.000e+00 1.000e+00 1.000e+00
##                            PC23
## Eigenvalue            4.590e-03
## Proportion Explained  2.514e-06
## Cumulative Proportion 1.000e+00
## 
## Scaling 2 for species and site scores
## * Species are scaled proportional to eigenvalues
## * Sites are unscaled: weighted dispersion equal on all dimensions
## * General scaling constant of scores:  14.31485 
## 
## 
## Species scores
## 
##                 PC1        PC2        PC3        PC4        PC5        PC6
## Callvulg -1.470e-01  0.3483315 -2.506e-01  0.6029965  0.3961208 -4.608e-01
## Empenigr  1.645e-01 -0.3731965 -5.543e-01 -0.7565217 -0.7432702 -3.484e-01
## Rhodtome -6.787e-02 -0.0810708 -6.464e-02 -0.0963929 -0.1749038 -4.008e-02
## Vaccmyrt -5.429e-01 -0.7446016  1.973e-01 -0.2791788 -0.5688937 -3.689e-01
## Vaccviti  9.013e-02 -0.7247759 -6.555e-01 -1.3366155 -0.7107105 -2.615e-01
## Pinusylv  3.404e-02 -0.0132527  4.465e-04 -0.0079399 -0.0012504  3.800e-03
## Descflex -7.359e-02 -0.0961364  6.485e-02 -0.0158203 -0.0741307 -5.328e-02
## Betupube -8.789e-04 -0.0008548 -6.637e-03 -0.0077726 -0.0072147  4.759e-04
## Vacculig -6.959e-02  0.2123669  6.410e-02  0.0136389 -0.0712061 -1.179e-01
## Diphcomp  3.807e-03  0.0333497 -1.026e-02 -0.0291455 -0.0086379 -2.263e-02
## Dicrsp   -4.663e-01 -0.3675288 -1.143e-01 -0.2490898  0.7694280  1.225e+00
## Dicrfusc -1.176e+00 -0.4484656 -1.338e+00  2.1943059 -0.9187333  4.027e-02
## Dicrpoly -1.597e-02 -0.0326269 -6.610e-02 -0.1166483 -0.0369723  6.576e-02
## Hylosple -2.935e-01 -0.4217426  4.523e-01 -0.0656152 -0.0358715 -2.234e-01
## Pleuschr -3.890e+00 -4.3657447  2.343e+00  0.3747564  0.1476496 -3.060e-01
## Polypili -5.032e-04  0.0069583  7.660e-03 -0.0005528 -0.0034856  5.849e-03
## Polyjuni -9.888e-02 -0.0584117 -7.234e-02 -0.0518007  0.0438920  1.472e-01
## Polycomm -4.028e-03 -0.0057429 -5.248e-03 -0.0104641 -0.0058180  9.059e-05
## Pohlnuta  9.473e-03 -0.0116498 -1.010e-02 -0.0112498 -0.0009520  7.691e-03
## Ptilcili -2.749e-02 -0.0257213 -2.522e-01 -0.3745203 -0.2917694 -4.907e-03
## Barbhatc -6.264e-03 -0.0070227 -7.152e-02 -0.1029116 -0.0825601 -1.183e-03
## Cladarbu -7.281e-01  3.0180666  2.016e-01  0.1400429  0.8708266 -1.253e+00
## Cladrang  8.117e-01  4.2257879  2.338e+00  0.2831533 -0.7644829  4.473e-01
## Cladstel  9.580e+00 -2.0074825  6.078e-01  0.4155714  0.1401899 -2.112e-01
## Cladunci -3.796e-01  0.0706264 -6.867e-01  0.1413783  0.9384995  1.495e-01
## Cladcocc  5.652e-03  0.0096766 -3.946e-03  0.0117038  0.0033077 -4.020e-03
## Cladcorn -1.367e-02 -0.0047214 -1.714e-02 -0.0270900  0.0004555  1.197e-03
## Cladgrac -1.037e-02  0.0083562 -6.489e-03 -0.0132067  0.0018124  1.012e-02
## Cladfimb  3.163e-03  0.0028937 -1.436e-02  0.0004203 -0.0043761 -1.344e-02
## Cladcris -2.649e-02  0.0010675 -4.626e-02 -0.0128097  0.0150875 -3.677e-02
## Cladchlo  1.347e-02 -0.0054141 -7.871e-03 -0.0099859 -0.0028496 -4.324e-04
## Cladbotr -2.051e-03 -0.0009378 -5.815e-03 -0.0095913 -0.0057131 -1.141e-03
## Cladamau  3.733e-05  0.0020956  3.925e-04 -0.0009025 -0.0009981  2.615e-04
## Cladsp    6.254e-03 -0.0021214 -1.997e-03  0.0011793  0.0023250 -3.246e-03
## Cetreric -4.938e-03  0.0079861 -1.740e-02  0.0046582  0.0488265  1.964e-02
## Cetrisla  1.715e-02 -0.0103936 -1.530e-02 -0.0214109 -0.0140577  3.490e-03
## Flavniva  8.793e-02  0.0932642 -3.761e-03  0.0536027  0.1450323  1.915e-03
## Nepharct -5.549e-02 -0.0368786 -3.638e-02  0.0055964  0.0415127  1.027e-01
## Stersp   -5.531e-02  0.3478548  2.425e-01  0.0088566 -0.1772134  2.711e-01
## Peltapht -3.661e-03 -0.0014739  1.729e-03 -0.0067221 -0.0043042 -5.434e-05
## Icmaeric -1.435e-03  0.0040087  1.296e-03  0.0023703 -0.0024341  2.959e-03
## Cladcerv  8.746e-04  0.0001554  2.667e-05  0.0004662  0.0006877  7.336e-04
## Claddefo -5.274e-02  0.0023107 -8.009e-02 -0.0278485  0.0198955 -1.490e-02
## Cladphyl  1.581e-02 -0.0057716  5.064e-04  0.0010606  0.0027075 -1.441e-03
## 
## 
## Site scores (weighted sums of species scores)
## 
##         PC1      PC2      PC3      PC4       PC5      PC6
## 18 -1.02674  2.59169 -1.53869 -3.23113 -1.104731 -2.20341
## 15 -2.64700 -1.62646  1.01889  1.88048  1.152767 -1.41888
## 24 -2.44595 -2.01412  0.12182 -2.44215  5.875564  8.03640
## 27 -3.02575 -4.32492  4.44163 -1.54364 -2.466762 -2.57141
## 23 -1.86899 -0.35380 -1.98920 -4.11912 -2.428561 -0.85734
## 19 -0.02298 -1.59265 -0.43949 -1.43686  1.058122 -1.18048
## 22 -2.53975 -1.70578 -4.10001  7.63091 -5.062274 -0.64415
## 16 -2.08714  0.06163 -2.32296  5.84188 -3.568851  1.63566
## 28 -3.77083 -5.80241  6.57611  0.02751  0.908046 -3.10610
## 13 -0.38714  2.82852 -0.32352  2.12507  3.631355 -3.88730
## 14 -1.75570  0.75366 -5.69429  1.68697  6.098213 -1.28171
## 20 -1.65653  0.32765 -1.93100 -2.50536  0.065456  1.72887
## 25 -2.39601 -1.83554 -1.65364  0.24230  1.756334  4.36881
## 7  -1.08594  5.78134  1.89095 -0.90494 -0.006891 -2.44158
## 5  -0.80203  6.28624  4.85360  0.70195 -3.707269  5.90752
## 6  -0.19764  5.11581  1.24710 -0.70641  1.876853 -4.68229
## 3   3.79496  1.11636  1.93079  1.75008 -0.164043  1.75417
## 4   1.24779  1.77832 -0.17925  1.13363  2.999648  0.07212
## 2   5.49157 -0.67853  1.58337  1.13337 -1.472922  1.97780
## 9   6.02767 -3.10958 -1.09190 -0.28517  0.894284 -1.20958
## 12  4.19915 -1.40814 -0.06645 -0.79569 -0.790560 -0.37424
## 10  6.18267 -2.32211 -0.76545  0.43683  0.430813 -0.78609
## 11  1.09782  0.55023  3.41127  0.38027 -0.325506  1.07113
## 21 -0.32554 -0.41738 -4.97967 -7.00076 -5.649086  0.09209
绘图
vegan 的结果处理成 data.frame 才能用于 ggplot2。这个过程比较复杂,不过还好有人已经造好了轮子:ggvegan1。
运行下面命令安装这个包。
devtools::install_github("gavinsimpson/ggvegan")
使用 autoplot()。
library(ggvegan)
## Loading required package: ggplot2
# 使用空白主题
theme_set(theme_bw())
# 一键绘图
autoplot(pca)
 
还可以使用 fortify() 将对象转变为 data.frame,然后再作图。
# 生成数据框
df.pca <- fortify(pca)
# 查看数据
knitr::kable(df.pca[1:5,1:5])
| score | label | PC1 | PC2 | PC3 | 
|---|---|---|---|---|
| species | Callvulg | -0.1469634 | 0.3483315 | -0.2505840 | 
| species | Empenigr | 0.1645106 | -0.3731965 | -0.5543083 | 
| species | Rhodtome | -0.0678718 | -0.0810708 | -0.0646412 | 
| species | Vaccmyrt | -0.5428697 | -0.7446016 | 0.1973452 | 
| species | Vaccviti | 0.0901303 | -0.7247759 | -0.6554941 | 
# 绘图
require(dplyr)
## Loading required package: dplyr
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
ggplot(mapping=aes(PC1,PC2,shape=score,color=score)) +
  geom_point(data=dplyr::filter(df.pca,score=="sites")) +
  geom_segment(data=dplyr::filter(df.pca,score=="species"),
               mapping = aes(x=0,y=0,xend=PC1,yend=PC2),
               arrow = arrow(length = unit(0.1,"inches")),show.legend = F) +
  geom_text(mapping = aes(PC1,PC2,label=label),data=filter(df.pca,score=="species"),show.legend = F)
 
除了PCA分析,ggvegan还顺便支持了CCA,RDA,metaMDS等vegan的分析结果。
- 
ggvegan on GitHub: https://github.com/gavinsimpson/ggvegan ↩︎